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Lemma. If M:I—> [R is a smoath function and if

: t~1
f Mndt=20

t
o

for all smooth functions m:I—>R  with 'q(.ta); = n(:tt)'f = 0, then M(t) =0

forall ¢t with t £t<£¢t, .
o~ 1
Proof. Suppose instead that M(t) #+ 0 for some t= t,, say that
M(tZ) > 0. Then M(t) > 0 on some small interval about t, and we can

choose a "bump" function b:l —>[R  which is smooth, zero: Gutside the °

interval, positive inside this interval,and 1 at ke /\

%

Then choosing mn = bM as variation, the hypothesis gives

& ty ,
Mndt = bMZ dt > 0.
t

t
o) o]

* This contradiction gives M = 0, as desired.
The methods used here are those of the Calculus of Variations. The
result can be formulated more generally, as follows

Given h: T.UXI—>R , consider paths cO:'I —> U which make

by
) hT dt stationary in comparison with other paths c, c(to) = co(to),.
t &
)
C(ti) = co(ti) . A necessary conditiom for this is Euler's equation:
S
8q L

In the special case when h is the Lagrangian function Li’ Euler's equations

t
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are Lagrange's equations. In more general treatments, the smooth paths

used above can be replaced by "piecewise'"smooth paths.

§ 8 Bilinear and Quadratic Forms

The kinetic energy 7 is usually a quadra.fic function of the velocities;
that is, 7 :T.U—>[R restricted to the fiber (t_:a.ngent. space) over a point
of U is a ‘quadratic functlion on that tangent space. We now study certain
properties of such quadratic functions.

Let 'V bea finit;-: dimensional véctor space. Consider a function
B:vXV—[R ( (v, w)m«»-> B(v,w)). We define B to be bilinear if-
B(v,w). is linear in v (with w fixed) and linear in w (with v fixed).

We define Q:V —>'R.‘ " to be g' uadratic wh.en,

1% Q(-v) = Q(v)

g . /
3" Q(u+v) - Q(u) - Qv) det ZQp(u,v) is bilinear in u and v.

b

That i.s., Q determines a symmetric bilinear function Q7.
‘As a consequence of bilinearity, we have

Qlu+tvrtw) - Qlu) -Qv+w) = Qu+v) - Qu) - Q(v) + Qlu+w)- Q(u) - Q(w).

Letting u=v = -w, Qu) - Qu) = Q(2u) - Qu) - Qu) + 0 - Qu) - Qu)

and thus Q(2u) = 4Q(u). (We must have Q(0) = 0 since Q°(0,0) = 0.)

4 def. 1

The assignment Qt@adrati? Q =Tz [Qlutv) - Q(u) - Q(v)] symmetzric

and bilinear, has an inverse B ~> B#. Define B#(u) = B(u,u), for B sym-

metric and bilinear. Clearly, (Qp)# = Q, since
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Q%) (w) = @ (u,u) = 3 [Qlu+v) - Q) - Qw)] = F[4Q() - 22(w)] = Qlu).
Conversely, B# is quadratic:
1° B#(-u) = B(-u, -u) = B(u, u)
and 4 $.4
2° B (utv) - (u) B (V) ( £ 2(8™) (u,v)) = Butv, utv) - B(u, u) - B(v, v)
= B(u, v) + B(v,u) = 2B(u, v).
LV B.

And from this calculation, clearly (B")

Given Q:V —>[{ quadratic and W £ V a linear transformation,

then Qp:W —>R. is quadratic. For the proof, note
Q= V=S TRV =B sp
Vw(v, V) WB(V,V) = Q(V)

Check that

is symmetric and bilinear.

where B = Q',’
The rest of

X B :
LZP5yxV >R is symmetric and bilinear

WXW
the proof is indicated by the commutative diagram

W @ >
Al A\\
Wxw —228 syxy —B

for V, and letting v

i
. , we have

M”

.,e
"“n
e.), we have

n
E“'

Choosing a basis €.

B( 2 qlei ¥ o qJej) ? q q B(e e eJ) Defining
1,]

g; | the matrix of Q for the basis e,

2.
1]

n j
I

Qv) = Z./ g. Jq q’ ; we may call

Lj=1 =
Consider the functions indicated in the following diagram

. ] ~A'
—& v —L—R§
L

g
~

v

=3
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The 5:11 and q_l are the usual coordinates and j is quadratic and

positive definite on each fiber, thus J is a Riemann metric on U.

L ée—f o '1}77' is a quadratic plus a constant on each fiber. Let
n
. 1' . .
7 = g; q & where gij: U—>R , that is for ueU, (gij(u)) is the
i,j=1 ’ ‘

positive definite symmetric matrix associated with the quadratic form J
induces on TuU’ the fiber over U. But we have already noted that such
a Riemann metric gives an isomorphism
u
T U —s (T U) = T U
of the tangent space to its dual, the cotangent space. This isomorphism
. v 1 Mool s .

carries a point with coordinates (Q°,...,¢ ) to the point with coordinate
P, » where ‘ : %

J _
Zgijq R e

oq

If we apply this isomorphism to each fiber of the tangent bundle, we get a
smooth map X :T.U—> T'U called the Legendre tré,nsformation, ‘as in

the diagram i 1
q e «

U\q\

n\"‘ R

The coordinates for T.U are ql'n',,....,q T,,ql,.,.;% and for T'U

s

they are ql'n'_' o W qn'n" sPpoesss P The map }( is then defined by

1, b i " 4
qgr' L = gw, , pXL = —— .
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We now consider the properties of this Legendre transformatian ;{

§9 The Legendre Transformation

' ; : n . . 1 n
Suppose U is an open set in R with coordinates q ,...,9 and

we are given a smooth kinetic energy functmn J from T.U to R . We

shall assume J quadratic; i.e., J = z T ?:11 . Such a function
. . i=1 aé 7

determines a smooth function X defined by

. . |
f = ——‘j-, ql-rr'f = ql-n'. . We set ‘ . /
S . TN\, /7

og!
.7 ,72"-" . From the quadratic assumption ' 6]

on .7 we have

aq" i=1 04
- 2 5J i N i
- Subtract 4 = E R dq'w + z - dq to get
i=1l 8qm, i=l 94
n . n q
aj = ( a;] g - > ——al-j—- dg'm,  Then
i= q i=l 3q ™
A 4 y
ad = aIr ) = (¥H* aJg
n n a1
9.7 Aol S} 1 i
= S a2 Lyhdiet - > S Y alae)
i=1 94 i=l 9q'Tw

£ :
(Recall that if X —L>Y ——>[  are smooth functions, then f pulls back

via @ to the function ff and we have d(£g) = }Zfst'df ﬁ"(gdf (g8) % df

Finally, using the defining equations for J ,

A < et e, 8 =2, i
dd = > (@)g ¥ - > (——4 ")dam .
=1 * i=1 aq'm
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SN 2. 8] i
But also dJ = E B dpi + z 5 dq 7° , and the coefficients
i=1 P i=1 8g -

of the differentials are unique. Thus

A i A
wig-a_ 87 8] -1 8.J
. q ’?’ = ap and = i z = i ]
i _ oq T. oq T

. i A e
which are the equations of the transferred kinetic energy J in terms of

the given one J .

Now if we have a mechanical system with Lagrangian L = J-V in
which a path c 'satisfi.es Lagrange's equations; then these last equations
yield Hamilton's equations for c. Let's follow the convention in mechanics :

of not writing in the maps ,, T and .?; , S0 the last equations are

. "N J A
dq 87 8] - 8J
a0 Y e

Py oq oq
By definition of X

dpl _i(aﬂ)=_d( 8._2 )
dt dt -1 dt 1

0 9q

A
_ 8% _ 8t 8% __(aJ " a’/)
aql aql Bql aql aql

. -1
So by setting 9'/ =J +(V'<p , we have Hamilton's equations

dq- _ 8.5 - P, gy
it - N
o api | dt aql

A

Exercise: Let n=1 and J = g'qz, where U—2>R . Calculate J .
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We want to understand bc;etter how this scheme produced these
equations., Notice first that X fnag;s TaU :intoA T?U :- which is to say
Z 1 ) 1r —> 7 isa morphism of prebundles. Thus we may as well
look at 2’ on each fibre.of T.U and paste the fibres together where we
must., So consider a finite dimensional vector space V (think of this as .
TaU fo'r.some ac U)

a) At each point' veV, TVV =V (-rvc«wW w) , where c(t) = v+tw

is a curve I—> V. (Identify V with 'I“’V by this isomorphism. )

b) At each ve V, TV 2V (dvf'w*" @- ) where

dvf (w) = ac—i-(f(v-i-tw))l fSR . (Again identify v™ and TV, )
t=0

*
¢) T°V can be identified with VXV  via

AN A e
(v, dvf) (v, dvf)
T'V >V XV
'“"\ ™ where w(v,a) = v.
v = v
v = > V
We have another projection V X V* sy T (v, @)n~—s a .

d) A 1-form w on V is a smooth function w:T— T°V such that
Tow = '1V . Composition of o with a ) V X V o v
{i-form w produces a smooth function - -

z = gow,
w
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e) In particular, suppose L: v —~R is smooth (think of L as a

Lagrangian function restricted:to one fiber of T.U). Then dL is a

de %
~ V . To compare this with the

1-form and so determines V
example at the beginning of this section, let the potential energy be zero

so L=J . The first defining equation for ¥ says Z‘dj = ftT»ociﬂ when
written in coordinétes. Returning to the general case, the explicit formula

for de gives each value deV as a funct;on of w:

= L(v +tw) .

deV(W) T at -

)
f) Let e,,...,e_ be a basis for V with coordinates e ,...,en;
1 n

.1 y
then e ,..., e” are a dual basis for V" with coordinates ei, W5 85 en.

The formula for a?de = x in these bases is

Tv(w) = > (ﬂj“- ) gl

j=1 oe L]
” 2 i i 5L
" Apply e, to both sides and use e = é to get e. L v = or, as
i i j g gei v
functions '
e.f=£ , i=1,...,n.
i i
Oe

’ N T .
In the mechanical rotation e = g and e, = p,, since V= TaU and

»0e a ) n :
V' =T U for ae U, U openin R , and the result reads
' oL
pX = ——

.a{;l
as before. '

The Hamiltonian function arises from asking the question: when is f

invertible _1: (This is probably not the wayl Hamilton found it. )
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By the Inverse Function Theorem (see Abraham p. 10), Iﬂi exists if
2 _

8 L
X

and only if the matrix (———| ) 1is non-singular at every ve v.

dede’
N e ; g -1 .
g) Suppose x invertible. Does r{ come from a smooth function

* : ; :
on V in the same manner .Z came from a smooth L on V? That is,

* ) -
is there V. — >R such that & 1amoanz

7

%
VXV

‘ >V
From part f) we have R
n g ~ aH| |&
dL = >3 (e.X)de’. !
i=1 v
Let's try the formula dual to this one:
, A - ' .
We want H so that .dH = z (e.{ 1)dei . Use the derivation property
i=4
of d:
2., et N SO = i,-1
2 (e “)de, = d[Z(e 2 Te.] - z e.d(e Z ).
) i . i - i
i=1 i=14 i=1
The second term on the right is
n n
‘i i w=1 -4 % 1
-S> e BTN AL T = - (T S (ef)de

i=1 i=1

Substitute this in our conjectured dH to get

ag = a[S (i Me, - L2,
i=1

so H should be

The steps reverse so this is indeed the right formula. On elements,

-1 Ty 5%
H_= Loy =LA for eV
y Ls "% 4

\ausual inner product



and in mechanical notation

n .
H= zélpi-L.

i=1

3 | ; =l : : ;
(Notice that we are leaving out z and qf as is customary in mechanics.)

If,‘in particular, L = J -o]/ where (V is a function of only the ql's and Jh §

is quadratic as in our example, then

H= i L 8] -L=2] -L=g+V

i=1 oq

Given the Lagrangian L, define the Action A: V — R , and

Energy E: V—=R by Av=< dLv,v> , Ev = <aTdLv,v> - Lv. Both

are smooth functions.

The last lecture proved most of the following theorem:

Theorem (Legendre): If V is a finite dimensional real vector space

of dimension n, then

1) for each v e V, there is a natural isomorphism TV = V" (which

we consider equality below)

2) for each smooth L:V —s I , there. is a smooth

% 0
ity ¢

In coordinates

=1
with ei,‘. -ese 2 basis for V. Py dL

for L.

(v anne> de)

is called the Legendre transformation
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3) the function J = Zde is invertible if and only if the matrix
82 L
|
detaed v

is the Legendre transformation for H: V — IH_ defined by

) is non-singular at each v e V. If this is so A’ 'V -V

4 -1 =l
Hy=<y,X y>-L{ 'y = EI "vy.

4) in particular, if L is quadratic,then ,Z' is the isomorphism of V

with its dual given. by the inner product induced by L and E = L in this case.

[See Sternberg pp.4150-153, Goldstein pp.245- , Abraham '§17 .]

Corollary 4. If U open in [Rn, I open interval.C [R and

L: T.UX I-—>R is smooth, then L on each fibre determines

-
T.UXI >TUXI

./

N L
UXI
and all parts of the theorem hold for this,:( . (Abraham calls :(’ the fibre

derivative of L.)

Corollary 2. Let c be a pathin U, T lifted pathin T.U., If ¢

satisfies Lagrange's equations for L, then X 'C satisfies the canonical

differential equations for H (Hamilton's equations):

dq' _ 8H el 4Py 0H
dt Bpi dt 1

Exercise Prove Corollary 2.
_ . .o en :
Forget the projection, so T U is an open set in {{_ and on it sits

a first order differential equation -- Hamilton's equation of Corollary 2. We
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shall consider changes of coordinates in this 2n-dimensional space which

leave this differential equation invariant. To do this we need to consider

2-forms, and in general k-forms.




Chapter II. Tensors and Exterior Forms

§10. Vector Fields

n 1
Let U be openin [{ with coordinates q ,..., qn. A vector field

X on U is a cross-section of the tangent bundle of Uji.e., w X(a) =
for all ae U,
For example, for given coordinates ql, T.U

we can define a vector field D "along the axis

ql" by D(a) = (a,D'a), where DY(a) = T, (path along

ith coordinate axis) = unit vector in ith direction U

in Ta.U’ fori=1,...,n. This clearly defines a cross-section D! of the

tangent bundle. The set of vector fields on U is an F-module, where >

is the ring of smooth functions U —>|R . The j—module structure is

given by the equations

(X +X2)a=X a+X. a

i 1 2
in(a) = f(a.)-Xia ,

for ae U, fe '} and Xi,X vector fields. The vectors Dl(a.), i=l,cee,d

form a basis of TaU’ so

nz Xa)D

e
-

n .
thus X = z XiD1 , where the functions X.: U —>R are smooth and
i=1 }
. - {
unique. This says that the vector fields D ,..., D" are a basis for the

set of vector fields on U as a real vector space.
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Each vector field X produces a function called the Lie derivative

L
F—25 7 witn |
e LXf(a) =< daf, Xa> = derivative of f along X,

Here we need "smooth" to mean Coo' since otherwise fo has one lower
order of differentiability than £f. The function LX has the properties

(1) LX is R -linear,

(2) Ly(frg)=f-Lyg+g Lof.
Property (1) is a consequence of the linearity of da and < ,Xa>, For (2)

Ly(frgla = <d f-g Xa>

< o L >
f(a) dag + g(a) daf,Xa:

f(a)<‘dag,Xa> + g(a)<daf,Xa>

= (f- LXg + g-LXf)a .
& i
In coordinates, X = 2 XiD so
i=1
e TR i
= <
Lyf = Z - dg , > XD >
j=1 oq i=1
n n
' of .
= <
¥ 2, e R
i=1 j=1 oq
n PR :
= z X. —af. , since <qu,D1> = 8 .
: . 1 1 1 -
= aq
In particular, if X = D', then
" £ af_ ,
so L ., is sometimes written B/qu .

Dl




58w

Definition. A derivation on the ring F is an R-linear

function 0: 3 >3 such that

8(f-g) = £-6g + g- 6f.
Each LX Visi a derivation on 5‘ ; in fact, these are all the derivations
on 7.
Theorem. For every derivation 8 on 3 , there is a unique vector
field X such that 6 = LX .
Proof. Take a ¢ U, Since translations are inv;ertible functions
which pfeéerve all differentiable structures, v;re may as well assume a = 0.

Since U is open, it contains a ball with center at the origin: for any u in

that ball define a path ¢ in U by
' c(t) = tu.

The Fundamental Theorem of Calculus gives us the equation

1

£e(1) - £e(0) =j << a
0
(i o Bfe i
= % T q (ua) dt.
0 i=1 0q
: dfc 1
Set hi(u) =f == dt and notice that q (u) is independent of t:
0 9q

f2) = €0) + S n(w)alu).

i=1

Then, by the defining property of 8°

4(0) + q'(0)en, (0)

6£(0)

of
i
Bq 0

n
> h(0)e
i=t
> eq¥0)
=1
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. : 5
since g(0)=0 and hi(O) = ——f— . Forany fe F  then we have
9q 0
n
)
ef = E qu- i i
i=1 9q

which is exactly LXf when Xi= eql. The Xi uniquely determine X, so

the theorem is proved.

§41. The Tensor Product

This section begins with theA material in MacLane and Birkhoff
Algebra, Chapter VI, §§4 and 5, and Chapter IX §§7 and 8.

A tensor is sometimevs describéd by symbols with many indices,
upper and lower. To réall'y understand tensors, we must understand their
relation to the basic vector space V under discussion. Tensors are in
fact elements‘ of new vector spaces built up out of V and its dual space by
the operation. of tens§r product. |

Given vector spaces V and W, a tensor product of Vand W is a -

vector space, which we will write V®W, together with a bilinear function
® :V X W—> V®W, which have the following property: if B: VXW—>T
is a.ny'b:.hnea.r function, then there is a unique linear map F:VRW— U

such that the diagram below commutes:

LAV RQW
vxw/

|

th\lj

Briefly, we say that & is "universal" among bilinear functions on VX W,

If we write the image of the pair (v,w) ¢ VX W under the map X as
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v®w. then the commutativity of the diagram is expressed by the equation
B(v,w) = F(V® W), Similarly, the bilinearity of ® is equivalent to the
equations

3 = 1i1 = +

(i) V®(w1><w2) v®w1 ><v®w2 5 (iii) (vl +v2)®w vl®w v2®w,
(ii) v@kw = k(v®w) , (iv) v®@w = k(v®w)
for all ViV Y, € ‘V A W, and k.e R .

The universality of @ means that the elements v@®w generate

V®OW as a vector space. Thus

1 n .
VW = {2 (Vi®wi)kil v, ¢ V. w, € w, ki scalars and satisfying

L the relations (i) - (iv) above j7-

describes VW in terms of elements but without bases. This decomposition

may be used to prove the existence of the tensor product (Algebra, Ch.IX)
: 3

What in the world is this: space VRW? Let V=W= R, and let €185, e,

3
be a basis for 'R . A bilinear function B: [R XR —> U satisfies
3

B( E:xe ,2 ye) = > x,y. Ble,, e.),
i Y rose i G | i° ]
i=1 j=1 i,j=1

so B is determined by the 3 X 3 matrix (B(ei, ej)). Let U be the arti-

ficial space on the basis {e.. ' i,j=1, 2,3}7 and set B(e.,e.) = e... Thén
1] 1] 1)

by the universal property of tensor products we have a unique linear h such

_that 'eij = B(ei, eJ-) = h(e.®e.)

RO R

Ny
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3 3
On the other hand, define a linear transformation g: U —> RT®R by
3 3
g(eij) = ei®ej . Then U is isomorphicto R &® [R , since

gh(ei® ej) = ei® ej

and
hgle..)=e,. .

ij ij

This analysis works for any pair of finite dimensional vector spaces V and W
but not in more general situations. If dim V=n and dim W =n, it proves
that VW is a finite dimensional vector space of dimension mn

In fo;ming the tensor product of given spaces, we must say
"a tensor product of V and W" instead of "the tensor product, " because
for all we know there may be many non-isomorphic spaces VW and
maps & enjoying the above properties. These doubts are removed by the
follo'w‘_ing theorem.

Theorem. Any two tensor products of V and W are isomorphic.

Proof. We can show somewhat more. Forlet VW and VOW

be two tensor products of V and W, with associated maps & and O

vowe VOW,

respectively: that is, @:(v,w)mmsv@w and T : (v,w)
Then we will show that there is a unique isomorphism £: VW —=> V(2D W
such that {L(v®w)=v O w. |

First, since VQW is a tensor product of V and W, we may replace
U and B in the definition above by VO W and O , getting a map f mak-

ing the following diagram commute

&
VXW—m—> VW

R;V -

s
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But 0 is also a tensor product of V and W, so we may reverse the

roles of & and g to get the map g in the following commutative diagram

VX W ® s vew
A
£| g
o
v
Vo w

Thus commutativit& means that for all (v,w) e VX W, we have
f(v®Ow)=vaw, glvow) =vQw.

In particular, gf(v®@w)=vQ®w, fglvo w)=vaw. Now use aga.in the

fact that VOW is a tensor product, replacing U and B in the definition

this time by VW and & We have just shdwn that gf and 1V®W Soth

make the diagram commute; hence, by theuniqueness assertion in the defi-

nition, 1V®W = gf. .Similarly, we show that fg = 1V oW This means

" exactly that f is an isomorphism of VW —> V 0 W with inverse g.

VXW o —> VW
\
ﬁ( &
= A
v 4
=~ VRW

We have shown that if tensor products exist, they are unique, "up to

isomorphism". DBut there might not be any tensor products of V and W

at all.

Theorem If V and W are vector spaces then they have a tensor

product.
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Proof. Eventhough V and W may have infinite dimension, we
can still find bases {ei} for V, ie¢ I, and '{dj} fo.r W, je J. The
basis elements are indexed not by integers but by members of the
("possibly uncountable) sets I and J; that is, to each element i of I
there exists a basis element e of V. Then every element v of V will
be uniciuely expressible as a linear combination of some finite subset of
the {ei}.

We are 11kew1se free to form a new set of symbols b i one for
each element (i,j) of the cartesian product IX J. The set of all possible
finite expressions 1_<z=1 rkb(k) » Where each b(k) is a bij-symbol for some.
(i,j); and each T € R , forms a perfectly good abstract vector space
when we define addition and scalar multiplication in the obvious way. We
claim that this new space L is a tensor product of V and W

Define D:V XW— L by ( zxe Zy']d)wvw-»?xyb .

Clearly, g is bilinear. If now B:VXW — U is bilinear, we have

er Zyd ZxB J Y\xly‘]B J' Hence

1,j
if we define f: L —> U on the basis elements {b_} of L by the formula

1]
f(b ) B(e dj)" computation shows that the tensor product diagram com-
mutes, and that this is the only f whicH will make the diagram commutative.
Hence L is a tensor product of V and W,

Denoting the elements bij by the symbols ei® dj' we derive as a

corollary that if {ei} 'is a basis of the vector sPaice V and {dj} is a
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basis of W, then {ei®dj} is a basis of V@W. Notice that not every
vector of VW is of the form vQ@w forsome v in V and w in W,

There will usually be sums E . vi®wi which cannot be reduced to single
i )
terms of the form v®@w; e.g. ei®d1+ e2®d2°

We now define the space of 2-tensors on V as 'I‘Z(V) =VQRV.

Since V@YV has basis {ei®ej}, we can write any element t of TZ(V-)

as t= Z xl']ei®ej , where the le are real numbers. The traditional

i,J o
. eilag® : x dos
viewpoint is that the tensor is the array x J.  Of course, the matrix ele-

ments depend on which basis of V we pick;> we can derive the rule for

transforming to the new basis e{ , Where et = 2 a‘; e.;. ., as follows

' = J o 1 t = S S ¢
f, Be, 2o 2o @2 ¢ i B By 8,008
Therefore,
£ = E x e Qe = Z xlka at e'@e
< k i1
i,j,k,2
So Ml ik j_1
W o x (1)

Thus we have replaced the usual opaque definition that a tensor is an array
of coordinates relative to a ba.si; which transforms according to equation (1).
Our ﬁew definitién helps us see how tensors 'beha.ve under linear
transformations. In the most general case, we have linear maps gy Y e Y
and h: W — W' giving us a map g X l;.V XW—=V!'X W' defined by
sending (v,w) to (gv,hw). The composite ® (g X h) is a bilinear map on

V X W, hence by the definition of tensor product, factors uniquely through
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V®W as below, giving us a new map gRh:VRW—> VI®W'., Thus
gv®w) = gv@hw. It is also easy to see that if gha V' —5 V11 and
h': W!—> W“, then g'g®h'h = (g'®h')(g®h) (use the uniqueness

property in the definition of tensor product).

V X W- Y >V
I A

|
V!X W ; g®h
|
Vi
%v'sbw'

A historical note: we have defined elements of the tangent space
to be "contravariant" vectors. Actually, modern usuage considers
tangent vectors to be covariant in nature, since given ¢: V—> U, the
induced map ¢ on .the tangent spaces maps T.(V)—> T,(U); if the
induced map reve;sed ti‘xe arrow, taking T.(U)—> T.(V), it would be not
"co" but "contra." The reason for the traditional terminology (which we
will stick to) is that the coordinate transformations under change of basis,
given by (1), do interchange the position of primed and unprimed. letters.

Similar arguments to the ones we have been using prove that either
VR (W U) or (VRW)X U is a universal object for trilineér maps from
VXWX U. (cf. MacLane and Birkhoff , Ch. 16), Thﬁs we can unambigu-
ously define the tensor product ,V(X)W(Z)U to be VQZ)(WQS)U) and similarly
the tensor p:;odupt of any finife numBer of vector spaces. The elements of
T (V)= V®V®. RV (p times)_ é.re called n-contrave;riant tensors, or

n
14

contravariant tensors of rank n.
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Theorem. Let V and W be finite-dimensional vector spaces,

£ ae
VQW a tensor product, and V o W a tensor product of the dual

IR

E
°

W * : g g B
spaces V. and W¥, Then there is an isomorphism V O W > (VW)

% .
Proof. Recall that V was the set of linear maps £: V -—>[R .

- ; . .
If now (f,g) ¢ VeXW:“, fQg: VW —>R ®R = R ; therefore

) . (cf. the corollary above). Furthermore, the map

IRge (VOW
(£, gy~ £Q@g e (V ®W)* is bilinear. By the universality of G , there
is a map h:V*D W* — (V®W)* such that h(fog) = {®g. We wish to
show that h 'is an is;morphism.- It suffices to prove that h maps the

£
)

. i_ ] ¥ It N—
basis {e 0 @'} of V OW to a basis of (VO W Thus it will be enough

to show that {e'® @’} is the dual basis of {ei® dj}' But by the definition

of the tensor product of two maps,

(f@ d)(e. ®d,) = (e'e, ®d'd,) = (e'e )(&d,) since kDL = k4
k4 k 2 k 2

: : for k,Le

fi if i=k,j=1

il

ic]
Sk o

LO otherwise

Thus e1®c1J is the dual basis. We can now state the conclusion of the
¢ ®o_ sk . o

theorem as (VW) =V QW ; that is, we identity (VRW) with

% ®
V @W by the isomorphism here established.

§12. Tensor Algebras and Graded Algebras.

Let us now consider all the vector spaces Tn(V) = V...V

(n times), for n=1,2,... . For n=0 we will define TO(V) =R .

Suppose that a = v, ®v2®. g ®vr is in Tr(V) and that b = w1®w2... Rw



-67-

is in TS'.(:\_")'. Since all of the vectors A and Wj belong to V, we can
form v1® o ®Vr® w, D... ®ws € Tr_*_S(V), which we will call the
product of 2 and b. Thus if we refer to the whole collection of spaces
{Tn(V)} as Tﬂ=(Vj, extending the above multiplication by the distributiye
law gives a nétp.ral multiplicative structure on this set, which h;s the unusua.l
property that the product of an P Tr(V) with one of TS(V) lies in
Tr+s(v)’ so that the product is usually’in a space different from those of
the factors. |
Wé generalize this situation as follows. | An algebra A is a vector
space which in addition possesses a multiplication; that is, not only can
we multiply elements of the space by scalars, but a.n.y two elements of the
space itself have a product. This multiplication is required to be bilinear
and associative, and to have a unit element. Thus, we have the rules
(kiai +k2a2)b = ki(aib) +k
a(bc) = (ab)e , la=al=a

a_.b), blk,a, +k az) = ki(bai) + k. (ba

2(2. 171 2 22)

(ka)b = k(ab) , .a(kb) = k(ab)

.

for a,b,a € A and k,k

and k_ scalars. A graded algebra is a

) 1 2

string G of vector spaces, G'O’ Gi’ ... , with an additional product structure

. For each m and n,

such thatif ae G and be G_, then abe G
, n m G n+tm

this product must be a bilinear function from G X G to G , , must be
n m n+m
associative, and must have a unit element 1 ¢ Go. Notice in particular

that a graded algebra G is not an algebra, since the sum of any two elements
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is defined only if they both have the same degree ; that is, if they both
lie in the same Gi.* Now we can see that ’I’*(V) is a graded a.lge.bra.,'
with unit element 1 ¢ TO(V) =R . can T*(V) the tensor algebra of V.
Thére are other examples of graded algeb'r_a.s: éonsider the set Gn of
all homogeneous polynomials of degree n in the two letters X and Y.

A typical.elemeAnt'of (.?n is i:Zo a.iXiYn-i, where a e R . Gn is a
vector space under the usual addition and scalar multiplication of poly-
nomials, and since the product of 2 homogeneous polynomial of degree n
and one of degree m is a homogeneous polynomial of degree n+m, it is

easy to see that the set of all polynomials in S and Y contains the graded

algebra G.

§13. Exterior Algebra. .

An exterior algebra E is a graded algebra with the property that

the square of any element of degree one is zero. Now if a and b are of

degree one, so is a+b, hence 0= (a +b)2 =0 +ab +ba +0. Thus in any

exterior algebra, ab = -ba for any two elements of degree one, What
does the rest of an exterior algebra look like? We can get some idea of .

the answer by considering the simple example of an exterior algebra A

1

. . . ; e 21 .
for which A, is a two-dimensional vector space. If {e » 8 } is. a basis

1
' 1 2 _ 2 1 i i :
for Ai' then e e = -e e will lie in AZ' Thus AZ is forced to be at

least one-dimensional. (Note: We assume that no other relations besides

“If ac Gi then we say a has degree' i.
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(az = 0 for dega=1) are satisfied; in p-a.rticuila.r, . 8" #0.) It's also
easy to see that any prod>uct of elements of ‘Ai which lies in An (for n>2)
must be zero. So we az"e tempted to form A by letting An be the zero
vector space for n > 2, with AZ a one-dimensional vector spa;e whose

12 1 2
e e

basis is {312} ,» where by definition e =~ = . This does give us an

exterior algebra: for example, if xie1 + xze2 is any element of Ai’ the

S (x 8" o ez)(y gt +y ez) = (x,y, - %,y )eiezh
i 2 1 2 172 2% 1

tells us that (x & xzez)2 < 0.

1
Mpve now to the case where A1 is three-dimensional, with. basis
1 ' '
ei_, ez, e3} . Then e ez, eze3, <31e3 all must lie in AZ; denote them by
i2 23 13 s ' . :
e ,e ,e respectively, Then we can let A_ be three-dimensional,

2
with basis {eiz, e23, e13§ with A_ a one-dimensional space generafed by

3
123 123 . . . _ 3
e .= e e e, and An = 0 for n >3, Multiplication is now always possible

2 2 12 21 2 2 2 4 3. 21 312
since for example e e =e e e =-ee e =0 and e e e =-e"e e =
eig-.*?"e2 = -eieze3 = -e123. Calculation gives the rule

I 3 Bote g 1 ¥z % "
- = : 3
( 2 x.e )/\(z X.e YA ( z z, ) det[ Yy, ¥, ¥, B
i=1 j=1 k=1 2. B B
1 "2 73

where we have used the traditional "wedge" symbol to denote the anti-
symmetric multiplication of an exterior -algebra.
It is now apparent how to extend the above construction to the

n-dimensional case.
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Theorem. Given a vector space W of dimension . m,there exists
a (free) exterior algebra A = A(W) with Ai =W.

Proof. Let {ei, . em} be a basis of W. Let Ak(W) be a vector

. i’tiz e .ik
space whose basis is the set of symbols {e }, where
m!

kit (m:k)l

t<i <i,<...<i Sm. Thus A (W) has dimension (‘;‘) = )

1 2

To_ write out the rules of multiplication in a simple form, we will use the
language of permutations, considering a permutation o of order n as a
one-to-one function from the set of the first n integers to that set. The
sign of o, sometimes written (-1)0-, is defined to be +1 if o is the pro-

duct of an even number of transpositions, and -! otherwise, Then if

i i . |
i1 g on K in’ while ¢ is a permutation, we define e o(1) o(2) o(k)
- iio ° 'ik . .
(-1)" e ; it is not hard to see that this agrees with our two- and

three-dimensional examples. Now define exterior multiplication by

PRSI PR P JO if some i eqpals some L
e # A e = 3 7 5 ;
_ TR PORRE ' PR ) .
ke otherwise
Jpdgeeed Jjdse el
Finally, let 1.e e Tz oe e o , and extend this multiplication

linearly to all of A(W). Now all the properties in the definition of exterior

algebra follow: for example

SLLLL VN CLLE M TLL. Ayn s Bdgnn o ] e v X
(e Ae JAe = e
i . & Jaew sl k,...k
- i T % & 1 s/\ evi t )
, . ¥ .
is the associative law. Moreover, if a, = E c...eJ , then the formula
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A
3 A /\ar=det(/a(ij),e( »
detieyy) <"

holds. If a= 2 xiei is any element of degree one,
az = inxjei/\ ej = z + z +'2 = 0 +'2 xixjei,\ ej + z'x)f-}fej/\ei =0,
i=j i<j 1i>j %] : i>j
so A is an exterior algebra.
This construction is in fact the most general way of obtaining an
n-dimensional free exterior élgebra-, it does not depend on the choice of
basis. To prove this, we note first that if E is any exterior algebra, and
f is a linear transformation mapping W to Ei’ then there are unique linear
transformations fi:AiW o Ei such that the collection {fi} forms a -
morphism of graded algebras; that is, fo(i) = {,and fi(a)fj(b) = fi+j(ab) if

2 and b are of degree i and j respectively. This is true since we must

i-..i ir\_»)({i i i o i i
VTl f(eil\ezz\...,\elk) = fle YAfle Hn...nfe ),

have fk( e e

,since. fkis'. now: &eﬁ.ned on a basis, it extends uniquely to all of Ak g
Our proof that the construction of an exterior afgebra on V does not »
depend on the choic;e of basis of V will be based on the following very ' o
general principles, which we have been using implicitly for some time. Let
us define a functor on élgebras to ve’ctor spaces to be a function 4 which ’
to every algebra A assigns. a vector space ,%’(A‘), and to eQéry map
A —f—>A' of algebras assigns a map  AG(f): H(A)—> H(A') of vector
spaces (a linear transformation) with the rules that H (iA) = 1%(A) ., where

; €, :
1A is the identity map on A, and Y(gf) = X (g) /j(}{) if A —f—> A £ An
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# ‘
Given /J and a vector space V, a universal construction for Mand Vv

is an algebra R and an arrow wV—> H(R) (that is, a linear trans-
formation) with the following property: given any arrow t:V —> H(a),

there is a unique map of algebras f: R —> A such that t = /9 (flu. That is,
H(£f) makes the following diagram commute and { is the only map which

has this property.

u
v > [ (R)

. o

H(A) .

We saw this situation in the construction of the tensor product ( §ii above).
In that case we showed that any two universal arrows, i, e., any two tensor
products, were isomorphic.: Exactly the same proof works in the general
situation:

¢
Theorem. If (R,u) and (R',u') are both universal arrows for /3

and V, then there is a unique isomorphism h: R —> R' such that b(h)u = ul,

To prove this, simply repeat the proof of the above-mentioned
thcorem about tensor products; since nothing in the argument there depended
on whether the objects in question were algebras or vector spaces, this

universal property is all we need in the proof.

Now consider the functor & from graded algebras to vector spaces,

defined by £(G) = Gi'
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Theorem 1. The tensor algebra T*V is a universal construction
for V and O.; thatis, given a graded algebra G and a map V s Cz1 3
there is a unique map T*(V) ——> G of algebras making the diagram

below commute.

v i > P(T (V) = V
O(z) =
SN i
T B@ =G

Proof. It is easy to see that we are forced to take T < 1R y

T =t and to define rn(v1®. s ®vn) = (tvi)(tvz). ; .(tvn).

Theorem 2 Define [ as before, but mapping graded exterior
algebras to vector spaces. ' .Then if W is a finite-dimensional vector
spac;a, A(W) is a u#iversal object for W and 19 .

Proof. In the same silfua;ion as that of Theorem 1, defining

rn(a.if\ - an) = (ta,)A (taz)/\ - /\(tan) does the trick.

1
Now we can [;rove our assertion about the construction of the
exterior algebra on a given finite dimensional vectorlspace V. Theorem 2
shows that the allgebfa]&i(wt) constructed from a particular basis © reeer

is a univeréal object; likewise, the exterior algebra coming from 2
different basis di' %80 d.n is ﬁniveréal . Sincé any two universal objects
for a functor are isomorphic, the two exterior algebras we have constructed

are really the same. Incidentally, it is possible to define A(W) directly

as an invariant object; for details, see the last chapter of MacLane and

Birkhoff.
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- §14. Alternating Tensors

We now go on to derive a new and very useful way of looking at
z
A(W) as a special subspace of T, (W). In )12 we studied elements of

Sk’ the set of permutations of k letters. Now each o ¢ Sk can be in-

terpreted as a linear transformation on Tk(W): define o'(w1 o« P ®wk) =

W, D DW . and check that this can be extended to a well-defined
a(1) o(k)

linear map (this amounts to checking that @ on WX ... XW defined by

) X = { oo o X i -1i °
7(w, X wk) w0'(1)® ngcr(k) isak l}near map)

i

o9

Definition. A tensorte Tk(W) is called alternating if o(t) = (-1)
for all ce Sk'

Theorem. The set of alternating tensors in T*(W) can, in a

natural way, be made into a graded exterior algebra isomo rphic to A(W),

Proof. The set of alternating k-tensors clearly formsa-subspace of
Tk(W); furthermore, any tensor t can be symmetrized to yield an alter-

nating tensor. Specifically, let At) = Z\ (-1)0-01: if t is any k-tensor,
G:

~
3

not necessarily alternating. Then

TEAE) = S (-1) o) = (-1)T(-1)7 Ek (-1)" 7o (t) = (-1)7 > (1) T Telt),
creSk oe¢S i Sk

\OT

since in general (-1)0-(-1)1.:' (-1)" .- But since S, is a group, as ¢ runs.

k

over all the elements of Sk’ o7 also runs over all the elements of Sk
(perhaps in a different order, but cach element is counted once and only once).

Hence TA(t) = (-1)TA(t), for te T (W), so A(t) is alternating, whether or

k
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not t is. If t does happen to be alternating, A(t) = (k! )t, since there
are k! elements in S1 ; 8o the mapping A defined by A(t) = (1/k!)A(t)
has the property that At is always alternating, and that if t is already
alternating, then -Af = t. |

Now if s and t are any two tensors in T*(W)V, define s At to be
A(s®@t), where (é, tyar> s @t is'.just the usual product in the tensor algebra
T*(W). We assert that the alternating tensors form a graded exterior
algebra under A . First, given t of degree one, we have tA t= 0, since
S. consists of only two permutations, one of each sign, and hence

2
AltXt) =t®t - t®t=0. Next, we check the associative law. The proof

of this is divided into steps.
t. A(rt) = (-1)7A(t)  for te T (W), TeS .
This follows easily from the definition of A.

2. Giveno e S , define T e S by

k’ m+k
'&J('i):irfor 1<+m
T (i+m) = o(i) + m for m+i £ m+ti < m+k.

Then (-1)7 = (-1)°.

3, If s is an m-tensor and t is a k-tensor, then sAt = s A(At).

Proof.
s A At = A(s® At) = —1- AS s®(-1)0t) = f- AS (1) #s®1)
o'eSk ' creSk

n

oe Sk Gc Sk-

L S s®t) = A(s®t) = sat.
g

A( ki

Eji- 2 (-1)°'A(6f(s®t)) = (by 1)11_12 (-1)0-(—-1)6}’A(s®

t)
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4. zalsat) = ¢ ra(s@t) = rals@t) byl
| AE@(s@t) = A(ERs)®) = (x®s) At
Ar@s)at = (zasiat.

Similarly, we check that the alternmating tensors have the other properties
of an exterior algebra.

To finish the proof we must establish theisomorphism between the

~ set of alternating tensors and 'IT#'(W) Let Epreeen®y be a basis of W;

then a linear map on A(W) is determined by its values an all basis elements
A oo e, . Then map,ping e A...Ahe, tothe alternating tensor

e,
Lt i

' A(ei ®...Qe. ) is an isomorphisms: it is one-to-one since

i

AMSalk @...@e. )= alm) S (-1, &...Be .
%: Ll ’k) LZ z g'k o{iy) o (i)

is a sum of distinct basis elements of Tk(W') with non-zero coefficients,

hence non-zero; it is onto since given any alternmating tensor t ¢ Tk(W), '

1.

write t = z a.e, Q... Q‘S).e].~k ; then the element Z a.e. A Ne, of A
i 1 1 K

A(W) i ‘ X
(W} is mapped to 4 z a'i.ei1® e weik); = At =t. This completes the

proof.

§.1 5. Local Manifolds: Invariant Description.

Eventually we will describe méchanical systems (Lagrange's equations,
Hamiltonians, etc.), on smoath manifolds obtained by piecing together open

o :
sets of Euclidean spaces [ . Hitherto, all our trecatment has been local,



so has been formulated for open sets U in IRn . Each such set

UC an comes equipped with aL'naturaLset of coordinates -- those of

Rn. However, }:he basic constructions such as the tangent bundleT. U

or the Lagrange equations for a smooth function L:T.U—>R have in

fact been independent of the choice of coordinates. Indeed, all of our
previous discussion of such open sets U can be made more clearly in-
variant if U is replaced by a ":lbca} manifold" M in the sense of the follow-
ing definition. The sense is this: Given coordinates qi on U, a function

‘ ' ' 9
f: U—>R  is smooth if all the higher partial derivatives —fl- are con-
: " dq

tinuous, The set F of é._ll smooth functions is then the same for any allow-

able choice of coordinates; hence we can give an invariant description in
terms of 7.

Definition. A local manifold is a set M together with a set 3

of functions f: M -—>‘R " such that

1) there exist q 1, Rp qn € 3’ such that the map

el 1 n
mAa~~——e(q M, ...,q m)

.M—‘°—> R™

. : ~
is one-to-one onto an open set UC [,

2) f¢F if and only if fqo—i is smooth on U.

We leave the reader to carry out the replacement.
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§16. The Exterior Bundle

We have seen that given any finite-dimensional vector space W,
there exists (uniquely up to isomorphism) the exterior algebra A = A(W)
of W, i.e., a graded algebra universal for the properties

1. W = elements of degree 1,

2. waw=0,
We have also seen that

Ak(W) o alternating tensors on W

= {te Tk(W)I ot = (-1)%t forall ce Sk}'

As we have done in the case of a two-fold tensor product, we can

show that - k-factors

sle
o

k(W) e Mult (W ,..., W :R) I
——

gy
>l'\1\ .

= all multilinear maps f£: WEX ... XW
Then an alternating tensor corresponds to an alternating multilinear map

a:W* X.ooo X W ——>~R

o
such that k factors
o N
oo 0 = = 3 0o 0y 9 a X 3 . VV .
.a(vi g ,vk) (-1) a.(vo_(i) vc(k)) forall ceX, , v, ¢

: o T
Suppose U is an open set in IT . (or better, a local manifold as

defined above). We define the kth exterior bundle over U to be

k

ASU = Ak(T'U) = {(a,d)] 2¢ U, de Ak(Ta‘U)},
| 5 |

v )

U : ave u
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i.e., the kth exterior bundle is the bundle whose fibers are the kth exterior

algebra of the cotangent spaces of U. If k=0, each AO(TaU) is just R,

so AO(U)'= U xR (all fibers isomorphic to the 1 -dimensional vector

space R .

AkU is a local manifold -- for if U has coordinates qi, % B ) qn and

n i n

TaU has basis ei; ese,€& , then AkU has coordinates q ,...,q and

, where the P, . are the dual basis to the basis

P.
1...lk

11...ik

i

1 1 :
{e 'A... A e k} for A TaU); we can define a function on AkU to be

1l
smooth if it is smooth in terms of these coordinates.

For any integers k and m, we may form the "pullback" of AkU

and AU over U

UX A™U = {(x,y) e A¥U x AU w(x) = wly) }

AU pullback  A™U

This pullback is itself a bundle over U. Now we can define a ‘multiplication
on’ AkU >1<I AU fo Ak+m U by means of the multiplication in A(TaU) .for
each a e U: |

ARy x AT — N pktmy

((a, d)., (a,d")) PP N (a,dnd") e AkfmU .




